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Causality in the 21st century

» 1/2 a century ago different disciplines had their own opinions about
causal inference.

» Today there is nearly unanimous acceptance.
» New methodologies rapidly cross fertilize across disciplines.
» The analysis of a single modern medical study may use
» mediation analysis (origin in psychology and sociology),
> instrumental variables (origin in economics and genetics), and

> marginal structural models (origin in epidemiology and biostatistics).

» "Causal revolution" in great part due to the emergence and
adoption of two formalisms:

» Counterfactual Models

> Graphical Models
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Graphical Models

> In epidemiology and medical research: responsible for the
acceptance and adoption of modern causal analytic techniques
because they facilitate encoding complex causal assumptions and
reasoning in an intuitive way

» Simple graphical rules exist to explain the potential biases of one's
preferred estimation procedure and the possible remedial approaches.

> No graphical rules existed to explain efficiency (variance) in
estimation

» In this talk: review graphical models and its use for understanding
biases and summarize some of our own work towards filling this gap



An adjustment set

Genetics

1N

Team motivation,
aggression

| Fitness
Pm-game/ Level
Proprioception

Connective Tissue
Disorder
TS\ Neuromuscular
fatigue
Contact Sport Tiesue
Previous
Injury
Warm-up Exercises

Weakness
(trx A)

—> Intra-game proprioception

ref: Shrier and Platt, 2008
BMC Medical Research Methodology




Another adjustment set

Coach /Geneli\
Fittisss Connectivzl Tissue
Disorder
- Pre—game/ Level - /
Team motivation, Proprioception \ Neuromuscular
aggression fatigue
Lontact Sport
P Tissue
X Weakness
Prcvnous
Injury
Warm-up Exercises — Intra-game proprioception Injury
Trx A Outcome Y

ref: Shrier and Platt, 2008
BMC Medi




Road map of the talk

» Gentle introduction to causal graphical models.

> Definition and properties

» Some examples of their use for detecting potential sources of bias

» Some of our results on efficient adjustment sets

> Rules for comparing adjustment sets for point exposure studies

> Summary of other results

» Final remarks



Causal Graphical Models in a nutshell
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Causal Graphical Models in a nutshell
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Causal Graphical Models in a nutshell

W Va
| e s By
Vo Vi ~ %7 =fs
\ o V 7\ v i
. ) ‘ ; Vio Vn:fn(Vs,VT,r:n)
Vo # ) . Viz = fia (Viy, Vi €12)
/ Vis = fiz3(Va, Vig, Vig, €13)

N Y

Vi —

Via Vis
;€13 omitted
non- common causes

» Graphical model with independent sj-s is tantamount to:

=11, (vlpag (v}))

» The collection of laws for V that factor like this is called a Bayesian
Network B (G).
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Causal Graphical Models in a nutshell: counterfactual
world static intervention
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Causal Graphical Models in a nutshell: counterfactual
world, deterministic dynamic intervention

" W Vi = fi(e1)
a - Va = fa(e2)
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Corollary: counterfactual law is identified and given by
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Causal Graphical Models in a nutshell: counterfactual
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Causal Graphical Models in a nutshell: counterfactua
world, random dynamic intervention

Ve Wi = filel)
/ / Vo = fo(e2)
> N V= file)
I 7 e Vi= fi(ed)

\\ // \ V:'):f:?(vlafﬁ)

Vio : 0

/ \ Vi1 =g (Vo Uy)
‘/ / \ ¥ Vi = f2 (W1, Vi, 1)
- Vi Vis Vis = fis(Va, Vio, Vi, £13)
Elyenny €13 omitted

non- common causes

Corollary: counterfactual law is identified and given by

pr(v) = TTr(vjlpag (vj)) x 7 (vi1|ve)
A1



Precursors, review papers in economics and an important
reference

> Pearl’s causal graphical model precursors:

> In biology: Sewall Wright's linear structural equations models with normal
errors (geneticist) — path analysis

> In economics: Haavelmo's simultaneous structural equations model —
allows non-recursiveness (simultaneous causation) and assumes parametric
equations.

»> For a review contrasting Pearl’s and Haavelmo's models see Heckman and Pinto
(2015). Causal Analysis After Haavelmo, Economic Theory.

> See also Imbens (2020) Potential Outcome and Directed Acyclic Graph
Approaches to Causality: Relevance for Empirical Practice in Economics.
Journal of Economic Literature

»> For a unifying approach to potential outcomes and causal graphical models see
T.S. Richardson, J.M. Robins (2013). Single World Intervention Graphs
(SWIGs): A Unification of the Counterfactual and Graphical Approaches to
Causality, In Foundations and Trends in Machine Learning, ISBN 13:
9781601988102
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Network B (G) , i.e. it factorizes as
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Causal graphical models

a.

Factual world. The law p of V = (V4,..., V) belongs to Bayesian
Network B (G) , i.e. it factorizes as

J
=[1r(vilrag (vj))
j=1
where pag (V) are the parents of V; in G.

Counterfactual world. For any A = (Aq, ..., As) C V, the distrib. of the

data when a regime that assigns a: to As with prob. s (at|Z¢) is
implemented in the population (where Z; are non-descendants of A;), is

pn(v): H (J\pag XHTCf af\zt

V,eV\A

So, pr is identified from p
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Bayesian Network

» Bayesian Network B (g) . collection of laws p for V' that factorize

as J
p(v) = gp(wlpag (v))

J
where pag (\/J) are the parents of V; in DAG G.

» d-separation: a sound and complete graphical rule for determining
whether a conditional independence holds under any p € 5 (G).

A 1llg B| C (Aand B are d-separated by C in G)

» Theorem (Geiger, Verma & Pearl, 1990) :

Allg B|Ce
A is cond. indep. of B given C under any p € B (G)
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d-separation

> A, B single vertices, C C V\ {A, B}
» a path from A to B is blocked by C if either
(1) at least one non-collider is in C

O—©—-0 O——0

(2) 3 at least one collider, such that neither itself nor its descendants

isin C
©

» A and B are d-separated by C if all paths bw A and B are blocked
by C
> A set A is d-separated from another set B by C C V\ {A, B} if all
A; € Aand By € B are d-separated by C, in which case we write
Allg B| C



Road map of the talk

» Gentle introduction to causal graphical models.

> Definition and properties

» Some examples of their use for detecting potential sources of bias

» Some of our results on efficient adjustment sets

> Rules for comparing adjustment sets for point exposure studies

> Summary of other results

» Final remarks
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Berkson bias

Two variables that are marginally independent will typically be dependent if we
condition on a common effect of both variables. (Berkson, 1946)
Example

Gene 1 Gene 2

® O)
o

Suppose P (gene 1) = P (gene 2) = 0.02 , genes are marginally independent
and Disease if and only if at least one of the two genes is present, i.e.

X=1-(1-A)(1-Y)

Then,
P (Gene 1|Disease, Not Gene 2) =1
P (Gene 1|Disease, Gene 2) = P (Gene 1| Gene 2) = 0.02

So, Gene 1 and Gene 2 are negatively correlated conditional on having the
disease.
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disease
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glass daily
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Time dependent confounders

Example: sequentially randomized trial of the effect of High vs Low dose
of Highly Active Antiretroviral Therapy (HAART) at months 0 and 3 on
Viral Load (high vs low) at month 6. (Assume in the graph all variables

are binary)
subsecTls HEALTH
STATUS ¢ PRE-EXIsTING
U CONDITION S
HAART DosE HAART Dose ViRAL LoAD
a1 BASELIE s frfgs v poNTH 3 A Howti 6
A0 s L SAL —— Y

\’/



Time dependent confounders

causal

Causal sharp null hypothesis Hg that (Ao, A1) has no causal effect on Y is
represented by the graph

subsect's HEATH
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CoNDITToN.S

U
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Time dependent confounders

Causal sharp null hypothesis HOC"“sa’ that (Ao, A1) has no causal effect on Y is
represented by the graph
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1. Regression controlling for L fails: Suppose we fit a saturated (and hence
correctly specified) logistic regression model

logitPr (Y =1]|Ag, A1, L) = Ao (Yo + 7L+ 72A1 + 13A1L)
+ (10 + 1L+ 11,A1 +173A1L)

and to test Hga"s"’ we test the null hypothesis
Ho : (70,71 72: Y3 112, 113) = (0,0,0,0,0,0)

The test does not preserve the a— level because HOC""”S"’/ # Hp since the path
Y — U — L — Ap is open when we condition on the collider L.
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Time dependent confounders

Causal sharp null hypothesis HC"“sa’ that (Ao, A1) has no causal effect on Y is
represented by the graph

subsect's HEATH
STATUS ¢ PRE-EXisTiNG
U CONDITYON.S

HAPRT Dose HAAmmmAL LA
o BaseLE sive E":‘gs AT prourh 3 e towth 6
L

A0 —) s Al Y

2. Regression that does not control for L also fails: Suppose we fit a
saturated (and hence correctly specified) logistic regression model

|OgitPr(Y = 1|A0,A1) = A (0(0 + OclA()) + (1/0 +1/1A0)
and to test Hg"’”’sa/ we test the null hypothesis
Hg : (ag,a1,v1) = (0,0,0)

The test does not preserve the a— level because Hgausa/ # H{ since the
path Y — U — L — A; is open when we fail to condition on L.



Identification
> Ya,,a; : potential outcome when everybody in the study population
takes treatment Ag = ag, A1 = a;1.

> Result (Robins, 1986): under the causal graphical model
represented by the graph

subsect's HEATH
ST M’US r'RE E)( TG

HApRT LoSE AART Dose ViRAL LoAD
Aﬁﬂb\ﬂimﬂ mﬁm MoTH 3 A1 Howtd 6

AO—)L s AL —— Y

the probability Pr (Y3,,a, = 1) of high viral load in the
counterfactual world in which everybody receives treatment
Ap = ag, A1 = aj is identified and given by

1
Pr(Yaa =1)= ZPr(Y =1lAg =ap,A=a;,L=1)Pr(L=1Ayg = ap)



Road map of the talk

> Gentle introduction to causal graphical models.

> Definition and properties
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Adjustment formula and adjustment sets
> Adjustment formula:

1

E[Y] = Y /E[Y\A:a,L:I}n(a|z) () dl
- R/—’ 2—=0"
intervention mean
g-functional
n(AlZ) }
= E Y
g {p(A\L)

where ZCLCV

> Definition: A Z— adjustment set for a single trx A and outcome Y is any
L disjoint with A and Y such that

» ZCL and,

» Under the causal graphical model, for any regime 7 (A|Z), Ex[Y] is
equal to the corresponding adjustment formula.

> If Z=Q, then we say L is a static adjustment set .
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> Generalized adj. criterion for static (i.e. Z = @) treatments
(Shpitzer. et. al., 2010, Perkovic et. al., 2015, 2018): L is static
adj. set iff

» L is neither a mediator, nor descendant of Y or of a mediator
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Characterization of Z-adjustment sets

> Generalized adj. criterion for static (i.e. Z = @) treatments
(Shpitzer. et. al., 2010, Perkovic et. al., 2015, 2018): L is static
adj. set iff

» L is neither a mediator, nor descendant of Y or of a mediator
> L blocks all non-causal paths between A and Y.

» Result (Smucler and Rotnitzky, 2020):

Class of all Z — adj sets = {L : L is a static adj. set and Z C L}
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Another static adjustment set
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An invalid Z-adjustment , Z= previous injury
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A valid Z-adjustment set, Z= previous injury
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Contact Sport
Previous
Injury
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(trx A)

——> Intra-game proprioception

ref: Shrier and Platt, 2008
BMC Medi
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L-NPA estimators of a counterfactual mean

> Recall: a Z— adj. set L satisfies that for any regime 7w (A|Z), the
counterfactual mean E, (Y) is equal to

_ £ [7(AlZ)
lpn,L ('D) = =p {p(A‘L)

Y} = g-functional that adjusts for L

> L—NPA estimators of | (P) are those which estimate the prop. score
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> Recall: a Z— adj. set L satisfies that for any regime 7w (A|Z), the
counterfactual mean E, (Y) is equal to

Y.L (P) =Ep {%’8 Y} = g-functional that adjusts for L

> L—NPA estimators of | (P) are those which estimate the prop. score
and/or the outcome regression non-parametrically

> Key point: All regular asymptotically linear L-NPA estimators of
$1 (P) have the same limiting mean zero normal distribution with

variance denoted, say, as Ufr,L (p)

> 0721 L (p) is the variance of the unique influence function of the functional
L (P) under a non-parametric model for P.

> Questions that we addressed:.
> Given two adjustment sets, are there graphical rules to determine which one yields an
estimator with smaller variance?
> |s there a universally optimal adjustment set and, if so, what graphical rules determine
it?
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Our contributions

1.

Proved that Henckel et. al. rules also apply when causal graphical model
is agnostic and trx effect estimated via NP L—covariate adjustment .

Derived graphical rules and efficient algorithms for finding:
2.1 globally optimal adj. sets for personalized Z— dependent regimes
2.2 optimal static and personalized adj. sets among observable adj. sets

2.3 optimal adj. set subject to a constraint on the sum of the node costs

Extended rules for comparing adj. sets to time dependent trxs and
confounding and proved that optimal time dependent adj. sets do not
always exist

Characterized graphs under which the semip. efficient estimator of the
counterfactual mean is asym. equivalent to the optimally adjusted
estimator

Derived an algorithm for identifying the set of all variables in the graph
that are informative about the counterfactual mean.
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> Lemma 1. Suppose B is a Z—adj. set and G, disjoint with B, satisfies
Alg G|B
then, GUB is also a Z—adj. set and for all p € B(G) and all regimes

n (A|Z)
U?r,GUB (p) < ‘731,3 (p)



Supplementing adjustment sets with precision variables.
> Lemma 1. Suppose B is a Z—adj. set and G, disjoint with B, satisfies
Alg G|B
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Y llg B|GA
If Z C G, then G is also a Z—adj. set and for all p € B(G) and all
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> In particular, for the static regime 7t that sets A to a,
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Comparing two arbitrary adjustment sets
> Corollary: Suppose that G and B are two Z—adj. sets such that
A llg (G\B) |B

and
Y 1lg (B\G) |GA

Then, for all p € B(G) and all regimes 7t (A|Z)
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Comparing two arbitrary adjustment sets
> Corollary: Suppose that G and B are two Z—adj. sets such that
A llg (G\B) |B

and
Y 1lg (B\G) |GA

Then, for all p € B(G) and all regimes 7t (A|Z)
07 (P) < 0%p (p)

» Proof:

2 2 _ 2 2 2 2
0xB~07G= 2B~ 9zBUGB) T YnGuB\G) ~7nG

gain due to supplementation gain due to deletion
with precision component G\B  of noisy component B\G



Not all adjustment sets are comparable

QI
@ e
> (O, Ws) is preferable to (O,, W;) if green association stronger than

brown, and blue association weaker than red

> (O,, Wh) is preferable to (O;, W») if brown association stronger than
green, and red association weaker than blue

> but... (01, 0y) is more efficient than both



Optimal adjustment set
> Theorem: (Henckel, et. al. (2019)). The set

O = non-descendants of A that are parents of Y or

of vertices in the causal path bw A and Y

is a static adjustment set. Furthermore, for any other static adjustment
set L,
A lg (O\L) |L

and
Y 1lg (L\O) |O0,A
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> Theorem: (Henckel, et. al. (2019)). The set

O = non-descendants of A that are parents of Y or

of vertices in the causal path bw A and Y

is a static adjustment set. Furthermore, for any other static adjustment
set L,
A lg (O\L) |L

and
Y 1lg (L\O) |O0,A

> Corollary (Rotnitzky and Smucler, 2020): O is the globally optimal
static adjustment set.

» Lemma (Smucler, Sapienza and Rotnitzky, 2021): O U Z is the
globally optimal Z - adjustment set



Globally optimal static adjustment set
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Optimal personalized adjustment set

Coach /enetlcs
/ Fitness
Pre game/ Level -
Team motivation,  Proprioception T —
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Warm-up Exercises —> Intra-game proprioception
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Previous / Wea‘k"ess
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Road map of the talk

> Gentle introduction to causal graphical models.

> Definition and properties

» Some examples of their use for detecting potential sources of bias

» Some of our results on efficient adjustment sets

> Rules for comparing adjustment sets for point exposure studies

> Summary of other results

» Final remarks
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Graphs with hidden variables

> Suppose that some variables in the DAG are impossible to measure.

> Then, even if an observable adjustment set exists, a globally optimal adj.
set among the observable adjustment sets may not exist.

O

> Example:

1\

U,
-

\I@I/ k‘l
®—QO

> If U is unobserved, then L ={Ly, Ly} and L = @ are two valid static
adjustment sets which do not dominate each other

> L ={L;} is another adj. set but is dominated by L =@

> In Smucler, Sapienza and Rotnitzky (2021) we characterize sufficient
conditions for an optimal observable adjustment set to exist



Time dependent treatments

> Suppose A; and A are two treatments, A; €ndg (A). Under a causal
graphical model represented by a graph G, the mean of Y, ., when the
static regime that sets Ap to ag and Aj to aj is

_ Iao (AO) Ial (Al)
Vo) = E{P(ao\Pag(Ao))P(31|Pag(A1))Y}
E{E[E[Y]ao, a1, pag (Ao) . pag (A1)] |0, pag (Ao)]}

> Definition: L = (Lg,L;) C V is a static time dependent adjustment set
relative to trxs (Ag, A1) and outcome Y in G iff for all P € B(G),

E (Yag,a,) = E{E[E[Y/a0, a1, Lo, L1] |0, Lo] }



Time dependent treatments

» Example:

> Xp is a time 0 adjustment set (= Lg)
» X1, U and (Xy, U) are time 1 adjustment sets (= Lp)
> In Rotnitzky and Smucler, 2020, we derived rules for comparing

static time dependent adjustment sets and showed by example that
an optimal adjustment set need not exist.



Study design.

> Assign cost to each graph variable and find the adjustment set
leading to smallest estimation variance:

> subject to a cost constraint — a universal solution does not exist

/'
1™ 0—0—0
o
\.@

» among adjustment sets of minimum cost — for point exposure we
provide the universal solution in Smucler and Rotnitzky, 2022, and

graphical rules for finding it



Semip. efficient estimation vs optimal non-parametric
adjusted estimation

> The interventional mean E (Y?) is

E[E(Y|A=a,V,W)] :/E(Y|A: a,V=v,W=w)p(v)p(w)dvdw
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marginal law of covariates, i.e. that V and W are marginally independent.



Semip. efficient estimation vs optimal non-parametric
adjusted estimation

O

e

> The interventional mean E (Y?) is

E[E(Y|A=a,V,W)] :/E(Y|A =a,V=v,W=w)p(v)p(w)dvdw
=p(v,w)

> Optimal non-parametric adjusted estimator ignores restrictions on the
marginal law of covariates, i.e. that V and W are marginally independent.

> Semiparametric efficient (SE) exploits these restrictions and can be much
much more efficient than optimally adjusted NP estimator.



However ... in some graphs the optimally adjusted
estimator is efficient

©
@

g g

> With discrete data the MLE of p, (y) under G is
Pamie (v) = Y Pn(y|lm,a) P, (m|a,0) P, (o)

m,o
> Surprisingly, pamie (¥) is asym. equivalent to the MLE of p, (y) under G* is
Pamite (y) =Y P, (y]o,a) P, (o)
o

> In Rotnitzky and Smucler (2000) we characterized the graphs in which the
optimally adjusted estimator is semiparametric efficient



Graph reduction for semiparametric efficient estimation of
a counterfactual mean

» In Guo, Perkovic and Rotnitzky, 2022, we derived the following.

» Given a graph G we derived an algorithm that outputs another
graph G*over a subset of the variables in G such that

> the semiparametric variance bound for estimation of E (Y;) in model

B (G) and in model B (G*) agree

> G* is the smallest such possible graph in the sense that all variables
in G* are informative. More precisely, the efficient influence function
for E (Y,) is a function of every variable in G* for at least one P in

B(G*)



Final remarks

» Estimation via adjustment vs semip. efficient estimation:

> Usual variance/bias trade-off: adjustment relies on less model
assumptions

> Equally or perhaps even more importantly: efficient estimation
requires estimation of each cond. density p (V}|pag (V})) . Even
debiased, influence-function based, i.e. one-step estimation, will
hardly control the estimation bias of these densities.



Open problems

> Inference about the functional returned by the ID algorithm when no
observable adj. set exists

> Some special cases have been studied, e.g. the generalized front door
formula, (Fulcher, et. al. 2019). General theory for an arbitrary
functional not yet available.

» Optimal adj. sets and efficient estimation for other parameters e.g.,
trx effect on the treated, and natural direct and indirect effects



THANKS!



