Optimal Management of an Epidemic: Lockdown, Vaccine and the Value of Life

Rody Manuelli Washington University in St. Louis and Federal Reserve Bank of St. Louis

ANCE May 21, 2020

Introduction

- Joint work with Carlos Garriga and Sid Sanghi.
- Trade off between output and "curve flattening:"
 - ▶ How deep? How long? Recovery: Slow or Fast?
- Vaccine:
 - Impact on optimal policy? Before? After? How much is it worth (\$)?
- Major determinants of outcome:
 - Preferences for consumption? Social value of averting deaths? How much will it cost to avert one death?
- ► Large literature in the last few hours. Closest to this paper: Alvarez et. al. (2020), and Acemoglu et. al. (2020)

Model

- To think about those questions we need both an economic model and a model of how an epidemic spreads:
 - Standard continuous time, representative agent macro model, enlarged to take into account the potential additional disutility associated with the loss of life during an epidemic.
 - SIR epidemiological model.
 - Two Phases:
 - > Phase I: Pre-vaccine. Only available policy: stay-at-home.
 - Phase II: Vaccine arrives as a Poisson event and available policies are stay-at-home and vaccination rate. Option: Treatment.
- Two sources of uncertainty: standard (associated with the realization of a random variable) and model uncertainty.
- Ongoing work (some by us): relaxes assumptions about the economic model and the epidemiological model.

Preview of the Findings

- Wide range of estimates because of uncertainty about the right model (and data quality)
- ► The optimal policies depend on the state (S, I). Any policy that relaxes restrictions after the peak in infections is suboptimal.
 - Random testing is essential.
- Stylized features of the optimal lockdown policy:
 - Sharp decrease in employment (20-35%).
 - Partial (and slow) liberalization before the epidemic peaks.
 - Wide range (uncertainty) for the duration of the lockdown: 3 to 15 months.
 - The arrival of a vaccine need not result in complete liberalization but, in general, implies a significant "liberalization shock," even when only a small fraction can be vaccinated in the short run (week).

Preview of the Findings (cont.)

- Value of averting deaths plays a large role (curvature of preferences has a small quantitative impact)
 - ► The number of deaths averted (baseline) ranges from 0.01% to 0.39%
 - The cost per death averted (baseline) ranges from 2.5 to 50 million.
 - The higher the value, the longer the time until the economy returns to normal (range 4 to 15 months).
- The market value of a vaccine:
 - Theory predicts that as time passes a vaccine is less valuable.
 - In the baseline case, the value of a vaccine available after six months is about 59% of the value in the first week, and after a year 5%.
 - Intuition: Very infectious epidemics are short lived.

Economic Model

Preferences:

$$\underbrace{u(\phi wL - c_V(\mu(S + (1 - \zeta)I)))}_{\text{utility of net consumption}} - \underbrace{\Delta(D)}_{\text{disutility death}}.$$

- L is available stock of labor (which depends on the progress of the epidemic).
- $\phi \in [0, 1]$ is a measure of partial lockdown.
- Special Case (used in the quantitative exercise)

$$u(\phi wL - \underbrace{c_V(\mu(S + (1 - \zeta)I)))}_{=0}) = \ln(w\phi L - \underline{c})$$

and

$$\Delta(D) = M_0 \times D$$

with $D_t = \chi \kappa \zeta I_t$.

Economic Model (cont,)

- Representative Agent: private + social disutility death.
- Value in Phase II (vaccine available) F(S, I)

$$F(S, I) = \max_{\{\phi_t\}\{\mu_t\}} \begin{bmatrix} \int_0^\infty e^{-\rho t} u(\phi_t w(1 - \zeta I_t) - c_V(\mu_t Z_t)) \\ -\Delta [D_t] dt. \end{bmatrix},$$

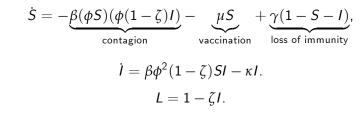
where $Z_t = (S_t + (1 - \zeta)I_t)$ is the vaccinable pop.

Value in Phase I (only stay-at-home) V(S, I)

$$V(S,I) = \max_{\{\phi_t\}} E \begin{bmatrix} \int_o^{T_{\eta}} e^{-\rho t} \left[u(\phi_t w L_t) - \Delta(D_t) \right] dt \\ + e^{-\rho T_{\eta}} F(S_{T_{\eta}}, I_{T_{\eta}}) \end{bmatrix},$$

Epidemiological Model

Standard SIR. The laws of motion of the state:



In this model

$$\mathcal{R}_0 = rac{eta(1-\zeta)}{\kappa}.$$

• If $\phi=1$ and $\mu=$ 0, the steady state is

$$S^{*}=rac{1}{\mathcal{R}_{0}}$$
, and $I^{*}=rac{\gamma}{\gamma+\kappa}\left(1-S^{*}
ight)$

Epidemiological Model (comment)

• In general \mathcal{R}_t (not \mathcal{R}_0) is (in this model) defined as

$$\mathcal{R}_t = rac{eta(1-\zeta)\phi^2 S_t}{\kappa}$$

and it decreases as ϕ and S decrease.

• Over a small interval the rate of growth of infections is $\lambda_t = \kappa(\mathcal{R}_t - 1)$ and the doubling time is

\mathcal{R}_t	Doubling Time (weeks)
2.8	1.2
2.0	2,1
1,5	3.4
1,1	23.1

Some Theoretical Results

• Optimal ϕ solves

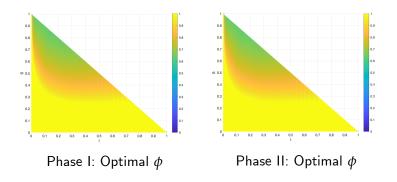
$$\frac{\mu'(\phi w(1-\zeta I) - c_V(\mu(S+(1-\zeta)I)))(1-\zeta I)}{2\beta\phi(1-\zeta)SI} = (F_S - F_I).$$

- ▶ **Result (Phase II)**: Assume that the utility function is strictly increasing and strictly concave and that the marginal cost of vaccination is positive even at zero (that is, $c'_V(0) > 0$) then, for a small enough γ , there exists a steady state characterized by $\phi^* = 1$ and $\mu^* = 0$ and the epidemiological variables are (S^*, I^*)
- Result: The Phase I model has a steady state that coincides with the steady state in Phase II.
- Take away: This last result implies that, in the limit, the additional value provided by the availability of a vaccine converges to zero!

Quantitative Exercise

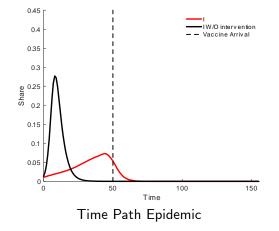
- \mathcal{R}_0 is 2.8. (we also look at \mathcal{R}_0
- All lives matter (value statistical life).
- We assume that the infectious period lasts 3 weeks.
- We assume that, in expectation, it takes about 50 weeks for a vaccine to become available (Phase II).
- ► Costless administration of a vaccine once it becomes available (µ = µ).
- Baseline: The vaccine arrives in week 50 (which is also the expected arrival time)

Optimal Policy in Phase I



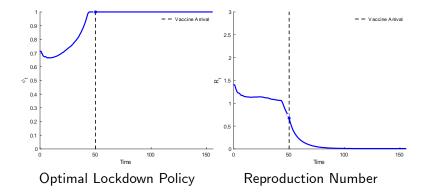
- Optimal policy depends on both (S, I)
- Vaccine arrival eases policy (small shift to the right) but does not result in zero lockdown (depends on the state)

The Path of the Epidemic: Flattening the Curve



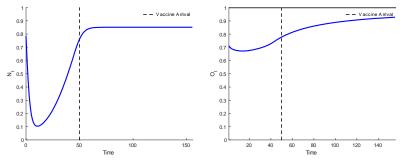
Why flattening (peak at 44)? Waiting for a vaccine.

Optimal Policy: Baseline



- Large initial decrease in φ (.71) and it bottoms out in week 7 (.66). It hits one as the epidemic peaks!
- Partial liberalization occurs before the peak.
- The R_t (reproduction number) is greater than one until week 44.

Consequences: Relative Deaths and Output Cost



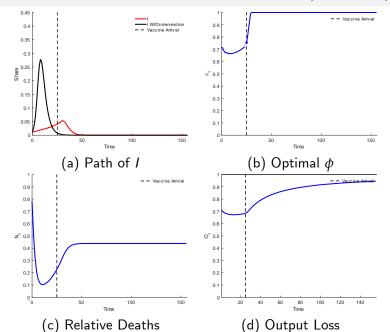
Relative Deaths (left panel) and Output Loss (right panel)

- Relative Deaths are low early ... about 85% in the long run.
- Output cost is large:
 - After one year output is about 22% below capacity.
 - After three years, the economy has been (on average) more than 7% below capacity.
- Cost per death averted (0.10%): 12.6 million!

The Path of the Epidemic: Early Vaccine (25 weeks)

- Luck (good luck in this case) has a large impact on the outcome:
 - Epidemic peaks in week 30 (vs. 44), and $\phi = 1$ in week 30.
 - Many more deaths are averted (0.39% vs 0.10%) at a much lower cost (2.5 million vs. 12.6 million)
 - Output loss after a year is smaller (17% vs. 22%), and in the long run as well (5% vs 17%).
- At the time the vaccine becomes available the drift of the stock of susceptible individuals decreases (some no longer susceptible because they are vaccinated):
 - Optimal ϕ keeps increasing (small jump).
 - ► Higher vaccination → lower cost of controlling epidemic → optimally lower cost in terms of foregone output.
 - Consequence: rate of infection **increases**.

The Path of the Epidemic: Early Vaccine (25 weeks)

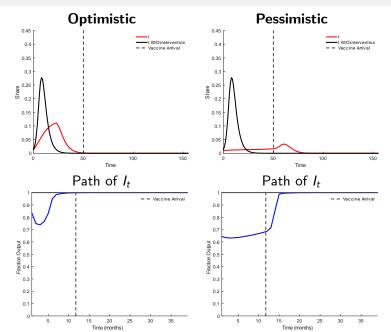


The Path of the Epidemic: Optimistic vs Pessimistic Scenarios

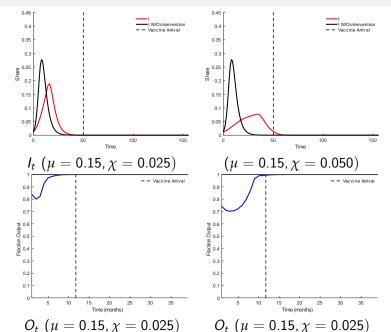
- Optimistic: High vaccination rate (95% in 12 weeks) and lower case fatality rate (χ = 0.04)
- ▶ *Pessimistic*: Lower vaccination rate (95% in 60 weeks), and higher case fatality rate ($\chi = 0.06$)

Scenario Comparison						
Indicator Baseline Optimistic Pessimisti						
Y loss (1Y) (%)	22%	9.0%	35%			
Y loss (3Y) (%)	7%	3.0%	12%			
Full Recovery (months)	11	5.5	14.5			
Deaths Averted (%)	0.10%	0.04%	0.39%			
Cost per Death Averted (\$)	12.6M	12.8M	5.5M			

Optimal Policy: Optimistic vs Pessimistic Scenarios



Impact of Case Fatality Rate



- Lower fatality rate implies a much more relaxed stay-at-home policy and output recovers fast.
- If the fatality rate is low (e.g. χ = 0.01) then the optimal policy is no lockdown (φ = 1) when there is reasonable vaccination capacity (the whole population can be vaccinated in 20 weeks).

The Impact of the Value of Life

The function that captures the disutility of deaths is

$$\Delta(D)=M_0D.$$

• Where M_0 is the value of statistical life.

Scenarios: Present value of income

M ₀	('000)
Very High	1,330
High	440
Baseline	347
Low	243

The Impact of the Value of Life								
	Deaths Av. Cost (M) Y Loss (1Y) (%) Y Loss (3Y) (%							
440	0.17%	8.87	27	8.5				
347	0.10%	12.6	22	7.0				
243	0.017%	19.6	5.9	1.9				

In all four cases the other parameters and the realization are held constant.

The different v	valuations	also	influence	the	timing	of	the	recovery.
-----------------	------------	------	-----------	-----	--------	----	-----	-----------

The Impact of the Value of Life								
	Y Loss (3Y) (%) Trough (months) $\phi=1$ Rel. Death							
440	8.5	3	12	0.75				
347	7	2	11	0.85				
243	1.9	3/4	4	0.97				

- ► The utility value of a vaccine depends on the state and it is given by F(S, I) V(S, I).
- We showed that $\lim_{t\to\infty} F(S_t, I_t) V(S_t, I_t) = 0$.
- The cost is driven by the change in consumption that yields the same utility.

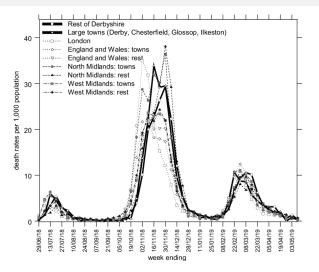
The Value of a Vaccine: Different Scenarios

These are the results for the different scenarios

Value of a Vaccine (Trillion)						
Arrival Time (weeks)						
Scenarios 1 4 25 50						
Baseline	3.44	3.34	2.02	0.16		
Optimistic	3.15	2.79	0.33	0.002		
Pessimistic	3.07	3.03	2.56	1.91		

- Value decreases with time.
- ▶ Better health infrastructure (higher μ and lower χ) → more depreciation.

Duration: 1918-1919 Pandemic in England



Deaths: 228,000 (about 0.5% of the population)

▶ GDP loss; Between 1-2% for 1 or 1 1/2 year (Barro et. al.)

The Value of a Vaccine and the Disutility of Deaths

$\Delta(D)$ and the Value of a Vaccine (Trillion)							
	Arrival Time						
PV ('000)	1 4 25 50						
440	3.74	3.72	2.6	0.56			
347	3.44	3.34	2.02	0.16			
243	1.75	1.43	0.02	small			

Value of life has a first order effect.

Concluding Comments

Stylized features of optimal policies.

- Shock treatment aspect to them. Duration is highly variable.
- Relaxation starts before the epidemic reaches its peak, and in some cases can result in an increase in the rate of infection.

Stylized features of suboptimal policies.

- Liberalization starts after the epidemic peaks are suboptimal.
- Uniformly respond to increases in the rate of infection by tightening stay-at-home rules are suboptimal.

Vaccines.

- Pre-vaccine policies depend on the likelihood of a vaccine.
- The market value of a vaccine decreases rapidly (especially if the infection curve cannot be flattened).

The Value of Life.

- Value of life has a first order effect on optimal policy.
- Averting deaths is costly.