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Causality in the 21st century
I 1/2 a century ago di¤erent disciplines had their own opinions about
causal inference.

I Today there is nearly unanimous acceptance.

I New methodologies rapidly cross fertilize across disciplines.

I The analysis of a single modern medical study may use

I mediation analysis (origin in psychology and sociology),
I instrumental variables (origin in economics and genetics), and
I marginal structural models (origin in epidemiology and biostatistics).

I "Causal revolution" in great part due to the emergence and
adoption of two formalisms:

I Counterfactual Models

I Graphical Models
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Graphical Models
I In epidemiology and medical research: responsible for the
acceptance and adoption of modern causal analytic techniques
because they facilitate encoding complex causal assumptions and
reasoning in an intuitive way

I Simple graphical rules exist to explain the potential biases of one�s
preferred estimation procedure and the possible remedial approaches.

I No graphical rules existed to explain e¢ ciency (variance) in
estimation

I In this talk: review graphical models and its use for understanding
biases and summarize some of our own work towards �lling this gap
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Road map of the talk
I Gentle introduction to causal graphical models.

I De�nition and properties

I Some examples of their use for detecting potential sources of bias

I Some of our results on e¢ cient adjustment sets

I Rules for comparing adjustment sets for point exposure studies

I Summary of other results

I Final remarks
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Causal Graphical Models in a nutshell

I Graphical model with independent ε0j s is tantamount to:

p (v) = ∏
j
p
�
vj jpaG

�
vj
��

I The collection of laws for V that factor like this is called a Bayesian
Network B (G).
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Causal Graphical Models in a nutshell: counterfactual
world, random dynamic intervention

Corollary: counterfactual law is identi�ed and given by
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Precursors, review papers in economics and an important
reference

I Pearl�s causal graphical model precursors:

I In biology: Sewall Wright�s linear structural equations models with normal
errors (geneticist) ! path analysis

I In economics: Haavelmo�s simultaneous structural equations model !
allows non-recursiveness (simultaneous causation) and assumes parametric
equations.

I For a review contrasting Pearl�s and Haavelmo�s models see Heckman and Pinto
(2015). Causal Analysis After Haavelmo, Economic Theory.

I See also Imbens (2020) Potential Outcome and Directed Acyclic Graph
Approaches to Causality: Relevance for Empirical Practice in Economics.
Journal of Economic Literature

I For a unifying approach to potential outcomes and causal graphical models see
T.S. Richardson, J.M. Robins (2013). Single World Intervention Graphs
(SWIGs): A Uni�cation of the Counterfactual and Graphical Approaches to
Causality, In Foundations and Trends in Machine Learning, ISBN 13:
9781601988102



Causal graphical models

a. Factual world. The law p of V = (V1, ...,VJ ) belongs to Bayesian
Network B (G) , i.e. it factorizes as

p (v) =
J

∏
j=1
p
�
vj jpaG

�
vj
��

where paG
�
Vj
�
are the parents of Vj in G.

b. Counterfactual world. For any A = (A1, ...,As ) � V, the distrib. of the
data when a regime that assigns at to At with prob. πt (at jZt ) is
implemented in the population (where Zt are non-descendants of At ), is

pπ (v) = ∏
Vj2VnA

p
�
vj jpaG

�
vj
��
�

s

∏
t=1

πt (at jzt )

So, pπ is identi�ed from p
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Bayesian Network
I Bayesian Network B (G) : collection of laws p for V that factorize
as

p (v) =
J

∏
j=1

p
�
vj jpaG

�
vj
��

where paG
�
Vj
�
are the parents of Vj in DAG G.

I d-separation: a sound and complete graphical rule for determining
whether a conditional independence holds under any p 2 B (G) .

I
A ??G B j C (A and B are d-separated by C in G)

I Theorem (Geiger, Verma & Pearl, 1990) :

A ??G B j C ,
A is cond. indep. of B given C under any p 2 B (G)
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d-separation
I A,B single vertices, C � V n fA,Bg
I a path from A to B is blocked by C if either
(1) at least one non-collider is in C

(2) 9 at least one collider, such that neither itself nor its descendants
is in C

I A and B are d-separated by C if all paths bw A and B are blocked

by C

I A set A is d-separated from another set B by C � V n fA,Bg if all
Aj 2 A and Bk 2 B are d-separated by C , in which case we write

A??G B j C
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Berkson bias
Two variables that are marginally independent will typically be dependent if we
condition on a common e¤ect of both variables. (Berkson, 1946)
Example

Suppose P (gene 1) = P (gene 2) = 0.02 , genes are marginally independent
and Disease if and only if at least one of the two genes is present, i.e.

X = 1� (1�A) (1�Y )

Then,
P (Gene 1jDisease, Not Gene 2) = 1

P (Gene 1jDisease, Gene 2) = P (Gene 1j Gene 2) = 0.02

So, Gene 1 and Gene 2 are negatively correlated conditional on having the
disease.



M bias



Time dependent confounders
Example: sequentially randomized trial of the e¤ect of High vs Low dose
of Highly Active Antiretroviral Therapy (HAART) at months 0 and 3 on
Viral Load (high vs low) at month 6. (Assume in the graph all variables
are binary)



Time dependent confounders
Causal sharp null hypothesis Hcausal0 that (A0,A1) has no causal e¤ect on Y is
represented by the graph

1. Regression controlling for L fails: Suppose we �t a saturated (and hence
correctly speci�ed) logistic regression model

logitPr (Y = 1jA0,A1, L) = A0 (γ0 + γ1L+ γ2A1 + γ3A1L)

+ (η0 + η1L+ η2A1 + η3A1L)

and to test H causal0 we test the null hypothesis

H0 : (γ0,γ1,γ2,γ3, η2, η3) = (0, 0, 0, 0, 0, 0)

The test does not preserve the α� level because H causal0 6) H0 since the path
Y � U � L� A0 is open when we condition on the collider L.
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Identi�cation
I Ya0,a1 : potential outcome when everybody in the study population
takes treatment A0 = a0,A1 = a1.

I Result (Robins, 1986): under the causal graphical model
represented by the graph

the probability Pr (Ya0,a1 = 1) of high viral load in the
counterfactual world in which everybody receives treatment
A0 = a0,A1 = a1 is identi�ed and given by

Pr (Ya0 ,a1 = 1) =
1

∑
l=0
Pr (Y = 1jA0 = a0,A = a1,L = l)Pr (L = l jA0 = a0)
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Counterfactual law under a point exposure intervention
I Counterfactual law.

pπ (v) = ∏
j :Vj2VnA

p
�
vj jpaG

�
vj
��
� π (ajz)

I Then for Y = VJ ,

Eπ [Y ] =
Z
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j :Vj2VnA

p
�
vj jpaG

�
vj
��
� π (ajz) dv

I But under the Bayesian Network Eπ (Y ) is equal to many other
functionals



Counterfactual law under a point exposure intervention
I Counterfactual law.

pπ (v) = ∏
j :Vj2VnA

p
�
vj jpaG

�
vj
��
� π (ajz)

I Then for Y = VJ ,

Eπ [Y ] =
Z
y ∏
j :Vj2VnA

p
�
vj jpaG

�
vj
��
� π (ajz) dv

I But under the Bayesian Network Eπ (Y ) is equal to many other
functionals



Counterfactual law under a point exposure intervention
I Counterfactual law.

pπ (v) = ∏
j :Vj2VnA

p
�
vj jpaG

�
vj
��
� π (ajz)

I Then for Y = VJ ,

Eπ [Y ] =
Z
y ∏
j :Vj2VnA

p
�
vj jpaG

�
vj
��
� π (ajz) dv

I But under the Bayesian Network Eπ (Y ) is equal to many other
functionals



Counterfactual law under a point exposure intervention
I Counterfactual law.

pπ (v) = ∏
j :Vj2VnA

p
�
vj jpaG

�
vj
��
� π (ajz)

I Then for Y = VJ ,

Eπ [Y ] =
Z
y ∏
j :Vj2VnA

p
�
vj jpaG

�
vj
��
� π (ajz) dv

I But under the Bayesian Network Eπ (Y ) is equal to many other
functionals



Adjustment formula and adjustment sets
I Adjustment formula:

Eπ [Y ]| {z }
intervention mean

=
1

∑
a=0

Z
E [Y jA = a,L = l ]π (ajz) pL (l) d l| {z }

g-functional

= Ep

�
π (AjZ)
p (AjL) Y

�
where Z � L � V

I De�nition: A Z� adjustment set for a single trx A and outcome Y is any
L disjoint with A and Y such that

I Z � L and,
I Under the causal graphical model, for any regime π (AjZ) , Eπ [Y ] is
equal to the corresponding adjustment formula.

I If Z = ∅, then we say L is a static adjustment set .
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Characterization of Z-adjustment sets

I Generalized adj. criterion for static (i.e. Z = ∅) treatments
(Shpitzer. et. al., 2010, Perkovic et. al., 2015, 2018): L is static
adj. set i¤

I L is neither a mediator, nor descendant of Y or of a mediator
I L blocks all non-causal paths between A and Y .

I Result (Smucler and Rotnitzky, 2020):

Class of all Z� adj sets = fL : L is a static adj. set and Z � Lg
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An invalid Z-adjustment , Z= previous injury



A valid Z-adjustment set, Z= previous injury



L-NPA estimators of a counterfactual mean
I Recall: a Z� adj. set L satis�es that for any regime π (AjZ) , the
counterfactual mean Eπ (Y ) is equal to

ψπ,L (P) � Ep

�
π (AjZ)
p (AjL) Y

�
= g-functional that adjusts for L

I L�NPA estimators of ψπ,L (P) are those which estimate the prop. score
and/or the outcome regression non-parametrically

I Key point: All regular asymptotically linear L-NPA estimators of
ψπ,L (P) have the same limiting mean zero normal distribution with
variance denoted, say, as σ2π,L (p)

I σ2π,L (p) is the variance of the unique in�uence function of the functional
ψπ,L (P) under a non-parametric model for P .

I Questions that we addressed:.

I Given two adjustment sets, are there graphical rules to determine which one yields an
estimator with smaller variance?

I Is there a universally optimal adjustment set and, if so, what graphical rules determine

it?
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Related literature
I Henckel, Perkovic and Maathuis (2019) provided graphical rules

I for comparing certain pairs of static adjustment sets
I for determining the globally optimal static adjustment set

I Also, Kuroki and Miyakawa, 2003 and Kuroki and Cai 2004.

I These works assume:
I causal graphical linear model, i.e. Vj = βTj paG

�
Vj
�
+ εj ,

�
εj : j

	
indep.

I treatment e¤ect estimated via OLS

I Works connected with e¢ ciency implications of inclusion of
overadjustment and precision variables in regression and in semip.
estimation of ATE:

I Linear regression: Cochran (1968)
I Non-linear regression: Mantel and Haenszel (1959), Breslow (1982), Gail
(1988), Robinson and Jewell (1991), Neuhaseuser and Becher (1997) and
De Stavola and Cox, (2008).

I Semiparametric estimation of a counterfactual mean and of ATE: Robins
and Rotnitzky (1992), Hahn (1998), White and Lu (2011).
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Our contributions
1. Proved that Henckel et. al. rules also apply when causal graphical model
is agnostic and trx e¤ect estimated via NP L�covariate adjustment .

2. Derived graphical rules and e¢ cient algorithms for �nding:

2.1 globally optimal adj. sets for personalized Z� dependent regimes

2.2 optimal static and personalized adj. sets among observable adj. sets

2.3 optimal adj. set subject to a constraint on the sum of the node costs

3. Extended rules for comparing adj. sets to time dependent trxs and
confounding and proved that optimal time dependent adj. sets do not
always exist

4. Characterized graphs under which the semip. e¢ cient estimator of the
counterfactual mean is asym. equivalent to the optimally adjusted
estimator

5. Derived an algorithm for identifying the set of all variables in the graph
that are informative about the counterfactual mean.



Supplementing adjustment sets with precision variables.
I Lemma 1. Suppose B is a Z�adj. set and G, disjoint with B, satis�es

A ??G G j B

then, G[B is also a Z�adj. set and for all p 2 B (G) and all regimes
π (AjZ)

σ2π,G[B (p) � σ2π,B (p)

I In particular, for the static regime π that sets A to a,

σ2π,B (p)�σ2π,G[B (p) = E

��
1

P (A = ajB) � 1
�
var fE (Y jA = a,G,B)jA = a,Bg

�
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Deleting overadjustment variables
I Lemma 2. Suppose G

�
[B is a Z�adj. set and B satis�es

Y ??G B j G,A

If Z � G, then G is also a Z�adj. set and for all p 2 B (G) and all
regimes π (AjZ)
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Comparing two arbitrary adjustment sets
I Corollary: Suppose that G and B are two Z�adj. sets such that

A ??G (GnB) j B

and
Y ??G (BnG) j G,A

Then, for all p 2 B (G) and all regimes π (AjZ)

σ2π,G (p) � σ2π,B (p)

I Proof:

σ2π,B � σ2π,G = σ2π,B � σ2π,B[(GnB)| {z }
gain due to supplementation
with precision component GnB

+ σ2π,G[(BnG) � σ2π,G| {z }
gain due to deletion

of noisy component BnG
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Not all adjustment sets are comparable

I (O1,W2) is preferable to (O2,W1) if green association stronger than
brown, and blue association weaker than red

I (O2,W1) is preferable to (O1,W2) if brown association stronger than
green, and red association weaker than blue

I but... (O1,O2) is more e¢ cient than both



Optimal adjustment set
I Theorem: (Henckel, et. al. (2019)). The set

O = non-descendants of A that are parents of Y or

of vertices in the causal path bw A and Y

is a static adjustment set. Furthermore, for any other static adjustment
set L,

A ??G (OnL) j L

and
Y ??G (LnO) j O,A

I Corollary (Rotnitzky and Smucler, 2020): O is the globally optimal
static adjustment set.

I Lemma (Smucler, Sapienza and Rotnitzky, 2021): O[ Z is the
globally optimal Z - adjustment set



Optimal adjustment set
I Theorem: (Henckel, et. al. (2019)). The set

O = non-descendants of A that are parents of Y or

of vertices in the causal path bw A and Y

is a static adjustment set. Furthermore, for any other static adjustment
set L,

A ??G (OnL) j L

and
Y ??G (LnO) j O,A

I Corollary (Rotnitzky and Smucler, 2020): O is the globally optimal
static adjustment set.

I Lemma (Smucler, Sapienza and Rotnitzky, 2021): O[ Z is the
globally optimal Z - adjustment set



Optimal adjustment set
I Theorem: (Henckel, et. al. (2019)). The set

O = non-descendants of A that are parents of Y or

of vertices in the causal path bw A and Y

is a static adjustment set. Furthermore, for any other static adjustment
set L,

A ??G (OnL) j L

and
Y ??G (LnO) j O,A

I Corollary (Rotnitzky and Smucler, 2020): O is the globally optimal
static adjustment set.

I Lemma (Smucler, Sapienza and Rotnitzky, 2021): O[ Z is the
globally optimal Z - adjustment set



Globally optimal static adjustment set



Optimal personalized adjustment set



Road map of the talk
I Gentle introduction to causal graphical models.

I De�nition and properties

I Some examples of their use for detecting potential sources of bias

I Some of our results on e¢ cient adjustment sets

I Rules for comparing adjustment sets for point exposure studies

I Summary of other results

I Final remarks



Our contributions
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Graphs with hidden variables
I Suppose that some variables in the DAG are impossible to measure.

I Then, even if an observable adjustment set exists, a globally optimal adj.
set among the observable adjustment sets may not exist.

I Example:

I If U is unobserved, then L = fL1, L2g and L = ∅ are two valid static
adjustment sets which do not dominate each other

I L = fL1g is another adj. set but is dominated by L = ∅

I In Smucler, Sapienza and Rotnitzky (2021) we characterize su¢ cient
conditions for an optimal observable adjustment set to exist
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Time dependent treatments
I Suppose A1 and A2 are two treatments, A1 2ndG (A2) . Under a causal
graphical model represented by a graph G, the mean of Ya0 ,a1 when the
static regime that sets A0 to a0 and A1 to a1 is

E (Ya0 ,a1 ) = E
�

Ia0 (A0)
p (a0 jpaG (A0))

Ia1 (A1)
p (a1 jpaG (A1))

Y
�

= E fE [E [Y ja0, a1, paG (A0) , paG (A1)] ja0, paG (A0)]g

I De�nition: L = (L0,L1) � V is a static time dependent adjustment set
relative to trxs (A0,A1) and outcome Y in G i¤ for all P 2 B (G) ,

E (Ya0 ,a1 ) = E fE [E [Y ja0, a1,L0,L1 ] ja0,L0 ]g



Time dependent treatments
I Example:

I X0 is a time 0 adjustment set (= L0)
I X1,U and (X1,U) are time 1 adjustment sets (= L1)

I In Rotnitzky and Smucler, 2020, we derived rules for comparing
static time dependent adjustment sets and showed by example that
an optimal adjustment set need not exist.



Study design.
I Assign cost to each graph variable and �nd the adjustment set
leading to smallest estimation variance:

I subject to a cost constraint ! a universal solution does not exist

I among adjustment sets of minimum cost ! for point exposure we
provide the universal solution in Smucler and Rotnitzky, 2022, and

graphical rules for �nding it



Semip. e¢ cient estimation vs optimal non-parametric
adjusted estimation

I The interventional mean E (Y a) is

E [E (Y jA = a,V ,W )] =
Z
E (Y jA = a,V = v ,W = w ) p (v ) p (w )| {z }

=p(v ,w )

dvdw

I Optimal non-parametric adjusted estimator ignores restrictions on the
marginal law of covariates, i.e. that V and W are marginally independent.

I Semiparametric e¢ cient (SE) exploits these restrictions and can be much
much more e¢ cient than optimally adjusted NP estimator.
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However ... in some graphs the optimally adjusted
estimator is e¢ cient

I With discrete data the MLE of pa (y ) under G isbpa,MLE (y ) = ∑
m,o

Pn (y jm, a)Pn (mja, o)Pn (o)

I Surprisingly, bpa,MLE (y ) is asym. equivalent to the MLE of pa (y ) under G� isepa,MLE (y ) = ∑
o

Pn (y jo , a)Pn (o)

I In Rotnitzky and Smucler (2000) we characterized the graphs in which the
optimally adjusted estimator is semiparametric e¢ cient



Graph reduction for semiparametric e¢ cient estimation of
a counterfactual mean

I In Guo, Perkovic and Rotnitzky, 2022, we derived the following.

I Given a graph G we derived an algorithm that outputs another
graph G�over a subset of the variables in G such that

I the semiparametric variance bound for estimation of E (Ya) in model
B (G) and in model B (G�) agree

I G� is the smallest such possible graph in the sense that all variables
in G� are informative. More precisely, the e¢ cient in�uence function
for E (Ya) is a function of every variable in G� for at least one P in
B (G�)



Final remarks
I Estimation via adjustment vs semip. e¢ cient estimation:

I Usual variance/bias trade-o¤: adjustment relies on less model
assumptions

I Equally or perhaps even more importantly: e¢ cient estimation
requires estimation of each cond. density p

�
Vj jpaG

�
Vj
��
. Even

debiased, in�uence-function based, i.e. one-step estimation, will
hardly control the estimation bias of these densities.



Open problems
I Inference about the functional returned by the ID algorithm when no
observable adj. set exists

I Some special cases have been studied, e.g. the generalized front door
formula, (Fulcher, et. al. 2019). General theory for an arbitrary
functional not yet available.

I Optimal adj. sets and e¢ cient estimation for other parameters e.g.,
trx e¤ect on the treated, and natural direct and indirect e¤ects



THANKS!


